Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Cartography and Geographic Information Science ; 2023.
Article in English | Scopus | ID: covidwho-2288950

ABSTRACT

Flows are usually represented as vector lines from origins to destinations and can reflect the movements of individuals or groups in space and time. Revealing and analyzing the spatiotemporal flow patterns are conducive to understanding information underlying movements. This paper proposes a new method called the OD–EOF (Origin–Destination–Empirical Orthogonal Function) to discover important spatiotemporal flow patterns on the premise of maintaining the pairwise connections between origins and destinations. We first construct a spatiotemporal flow matrix that contains connection information between origins and destinations and temporal flow information by adding a temporal dimension to the OD map. Then, we decompose the spatiotemporal flow matrix into spatial modes and corresponding time coefficients by EOF decomposition. The decomposition results depict the prominent spatial distribution of and temporal variation in flows, with most of the spatiotemporal characteristics highly concentrated into the first few spatial modes. The method is evaluated by five synthetic datasets and a user study and subsequently applied to analyze the impact of the COVID-19 pandemic on the spatiotemporal patterns of human mobility in China during the Spring Festival travel rush in 2020 and 2021. The results show the prominent spatiotemporal patterns of human mobility during these periods under the influence of the COVID-19 pandemic outbreak and the normalization of pandemic prevention and control. © 2023 Cartography and Geographic Information Society.

2.
Atmosphere ; 13(7):18, 2022.
Article in English | Web of Science | ID: covidwho-1987635

ABSTRACT

PM2.5 and PM10 in the atmosphere seriously affect human health and air quality, a situation which has aroused widespread concern. In this paper, we analyze the temporal and spatial distribution of PM2.5 and PM10 concentrations from 2016 to 2021 based on real-time monitoring data. In addition, we also explore the influence of meteorological conditions on pollutants. The results show that PM2.5 and PM10 concentrations are similarly distribution in temporal and spatial from 2016 to 2021, and the average concentrations of both show a decreasing trend. The ratio of PM2.5 to PM10 is decreasing, indicating that the proportion of fine particles is declining. PM2.5 and PM10 concentrations are higher in spring and winter, but lower in summer. Spatially, it shows a gradual shift from the characteristic of "high in the south and low in the north" to a uniform homogenization across districts. The spatial distribution of PM2.5 and PM10 mass concentrations is synchronous by applying empirical orthogonal functions (EOF). The first EOF pattern exhibits a consistent characteristic of high in the southeast and low in the northwest. The second pattern EOF reflects the effect of impairing PM2.5 concentrations in the southeast during the winter of 2016-2018. The PM2.5 and PM10 concentrations are significantly negatively correlated with wind speed and precipitation in both spring and winter. On the other hand, from the perspective of the circulation situation, the southeasterly and weak westerly wind in spring produce convergence resulting in higher particulate matter concentrations in the south than in the north in Beijing. The westerly wind is flatter at 700 hPa geopotential height, which is conducive to the formation of stationary weather. The vertical direction of airflow in spring and winter is dominated by convergence and sinking, indicating the weak dispersion ability of the atmosphere. The reason for the accumulation of particulate matter at the surface is investigated, which is beneficial to provide the theoretical basis for air quality management and pollution control in Beijing.

3.
Int J Environ Res Public Health ; 17(20)2020 10 21.
Article in English | MEDLINE | ID: covidwho-890387

ABSTRACT

The coronavirus disease 2019 (COVID-19) first identified at the end of 2019, significantly impacts the regional environment and human health. This study assesses PM2.5 exposure and health risk during COVID-19, and its driving factors have been analyzed using spatiotemporal big data, including Tencent location-based services (LBS) data, place of interest (POI), and PM2.5 site monitoring data. Specifically, the empirical orthogonal function (EOF) is utilized to analyze the spatiotemporal variation of PM2.5 concentration firstly. Then, population exposure and health risks of PM2.5 during the COVID-19 epidemic have been assessed based on LBS data. To further understand the driving factors of PM2.5 pollution, the relationship between PM2.5 concentration and POI data has been quantitatively analyzed using geographically weighted regression (GWR). The results show the time series coefficients of monthly PM2.5 concentrations distributed with a U-shape, i.e., with a decrease followed by an increase from January to December. In terms of spatial distribution, the PM2.5 concentration shows a noteworthy decline over the Central and North China. The LBS-based population density distribution indicates that the health risk of PM2.5 in the west is significantly lower than that in the Middle East. Urban gross domestic product (GDP) and urban green area are negatively correlated with PM2.5; while, road area, urban taxis, urban buses, and urban factories are positive. Among them, the number of urban factories contributes the most to PM2.5 pollution. In terms of reducing the health risks and PM2.5 pollution, several pointed suggestions to improve the status has been proposed.


Subject(s)
Big Data , Coronavirus Infections , Environmental Exposure/analysis , Pandemics , Particulate Matter/analysis , Pneumonia, Viral , Risk Assessment , Betacoronavirus , COVID-19 , China/epidemiology , Humans , Middle East , SARS-CoV-2 , Spatio-Temporal Analysis
SELECTION OF CITATIONS
SEARCH DETAIL